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SUMMARY 
A numerical investigation is made to establish whether multiple solutions exist for laminar, incompressible, 
steady flow in a parallel plate porous chamael with uniform suction at both walls. For values of the wall 
suction Reynolds number, R, greater than 12.165 three numerical solutions are observed for each R, while 
for R less than 12.165 only one solution for each R can be found. A method involving the inclusion of 
exponentially small terms in a perturbation series is used to find two of the solutions analytically, while an 
appeal to the numerical results gives an indication of how the third solution can be obtained. The series 
involving the exponentially small terms, as well as predicting dual solutions, gives more accurate analytic 
results for the skin friction at the channel walls. 

1. Introduction 

Many research workers have investigated the steady, incompressible, laminar flow of fluid 

in channels and circular pipes with uniformly porous walls. Berman [1] showed that for 

constant suction or injection at the walls the solution of the flow equations in pipes and 

channels can be reduced to solving a single ordinary non-linear differential equation which 

involves a parameter R, the suction Reynolds number. Several series solutions can be 

obtained, for both pipes and channels, depending on whether R is positive (suction) or 

negative (injection), large or small. 

The numerical investigation of the flow in a porous circular pipe by Terrill and Thomas 

[2] revealed dual solutions for all values of R outside the range 2.3 < R < 9.1, but no 

solutions within this range. Moreover they found that the two solutions for large positive 

R, i.e. large suction, differed by exponentially small terms of the form R -p e -qR. Terrill [3] 

modified the single analytic solution for large R obtained in [2] to include exponentially 

small terms, and was then able to find the two solutions analytically. 

Numerous numerical and analytic investigations by [4]-[7] and [1] on the flow through 

a uniformly porous channel have deduced that there is only one solution for each value 
of R, although solutions exist for the complete range of R, i.e. - ~ < R < ~ .  Raithby [8] 

in a numerical investigation on the channel flow found that there was a second solution 
for values of R greater than 12, which changed its shape for R > 27. The numerical work 

in this paper has been concerned with finding multiple solutions for values of R > 0, i.e. 
for suction at both walls, and has revealed that for 0 < R < 12.165 only one solution 
exists while in the range 12.165 < R < ~ three solutions exist for each value of R. The 
numerical results are discussed in chapter 3, where it can be seen that the difference between 
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two of the solutions for large R exhibits the same characteristics as the difference between 
the dual solutions for large suction in pipe flow, due to exponentially small terms. Thus an 
analytic investigation similar to Terrill's [3] was carried out for large positive R in which 
exponentially small terms were included in the perturbation series solution. This produced 
dual analytic solutions for large suction, and a comparison of the numerical and analytic 
results can be found in chapter 6. 

The interesting mathematical aspect of this problem, that could possibly be extended to 
other problems, is the way in which the inclusion of exponentially small terms leads to the 
prediction of dual solutions. 

2.  F o r m u l a t i o n  o f  the  problem 

Consider the steady, incompressible, laminar flow along a two-dimensional channel with 
porous walls through which fluid is injected or extracted with uniform speed V. Take x 
and y to be co-ordinate axes parallel and perpendicular to the channel walls, and assume 
u and v are the velocity components in the x and y directions respectively. Letting the 
channel width be 2h and introducing the dimensionless variable 

q =y/h (2.1) 

reduces the Navier-Stokes equations to 

_ ( 02u 1 02u ) 0u v Ou 1 ~P + v  + - - -  (2.2a) 
u-&-x + h  0r/ p ~- ~ h 2 @2 , 

h -T1 __02v ) Ov v Ov 1 Op + v(O^Zv + (2.2b) 
u Ox + h O~= ph On \ d x  ~ &l 2- ' 

where p, p and v are the density, pressure and kinematic viscosity of the fluid respectively. 
The continuity equation is 

Ou I Ov 
- -  + - O. (2 .3)  
Ox h Or/ 

With the walls of the channel at y = +h, i.e. r / =  + 1, the boundary conditions are 

u(x, + 1) = o ,  v(x, o) = o, 

Ou 
v(x, +1)= _+V, ~ ( x , O ) = O .  

(2.4) 

Berman [1] observed the equations of motion and the boundary conditions could be 
satisfied by assuming the velocity component v is independent of x and introducing a 
stream function, ~, of the form 

4, = [ h V ( 0 ) -  VxJf(n), ( 2 . 5 )  

where U(0) is an arbitrary velocity at x = 0. 
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With these assumptions the velocity components are given by 

u = h- l[hU(O) - Vx]f '(~),  (2.6a) 

v = Vf(q). (2.6b) 

Substitution for u and v f rom (2.6) reduces the equations of  motion to 

- 0, (2.7a) 
8xSq 

f "  + R ( f  'z - f f " )  = K,  (2.7b) 

where R = Vh/v is taken to be the suction Reynolds number of  the flow and K is a constant, 
to be determined later as a function of R. Equation (2.7b) can be written 

eft" + f ,2  _ i f "  = c~2, (2.7c) 

where e = 1/R and c~ z = K/R.  

The boundary conditions (2.4) become 

f ' (1 )  = 0, f(0) = 0, 
(2.8) 

f(1) = 1, f"(O) = O. 

The condition f(1) = 1 implies that R > 0 for suction at both walls and R < 0 for injection 
at both walls. 

3. Numerical solution of  the equations of  motion 

The numerical solution of (2.7b), subject to boundary conditions (2.8), is a two-point 

boundary value problem. However, the equation can be solved with just one integration 
if the procedure outlined in chapter 5 of  Terrill [4] is adopted. 

This numerical investigation into the existence of multiple solutions was only carried out 
for R in the range 0 < R < oo. The numerical results obtained are most clearly seen in 

Fig. 3.1, wheref"(1),  which is proportional to the skin friction at the wall, is plotted against 
R for R > 0. In the range 12.165 < R < ~2 triple solutions were found for each value 
of  R, whilst only a single solution was observed for each R when 0 < R < 12.165. 

The results of  Fig. 3.1 will be discussed by dividing the figure into three sections, as 
follows: 
1) Section I (R = 0 to R = oo) covers the well behaved solutions for suction. 

2) Section I I  (R = 13.t 19 to R = oo) contains the solutions whose axial velocity profiles 
have a maximum located strictly between the centre of  the channel and the wall but whose 
centreline velocity is positive. 

3) Section I I I  (R = 13.119 to R = 12.165 to R = oo) includes axial velocity profiles with 
the same form as section I I  solutions but with reverse flow at the centre of  the channel. 
This section contains dual solutions for the range 12.165 < R < 13.119. These dual solu- 
tions have the same basic shape but differ in the value of the centreline velocity. 

The deformation of the velocity profiles for section I I  and section I I I  solutions is con- 
tinuous, i.e. as R ~ 13.119 f rom above and below the limiting profiles are identical. 
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Figure 3.1. Variation off"(1)  with R for values of R greater than zero. 

The section I solutions agree with those obtained in previous papers, i.e. Terrill [4] and 
Berman [9]. They are characterized by a maximum value at the centreline which then 
decreases to zero at the wall with no turning points or points of  inflexion in between. The 
deformation of the profiles in this range is from the parabolic form for R = 0, with a non- 
dimensional centreline velocity of  1.5, to the boundary layer form as R ~ oo which has a 
non-dimensional velocity approximately equal to 1.0 everywhere except in the thin viscous 
layer near the wall. 

Section I I  velocity profiles are given in Fig. 3.2. The non-dimensional velocity profiles 
for this range have a minimum at the centreline (which has a positive value) and then pass 
through a maximum before going to zero at the wall. This type of solution was first observed 
by Raithby [8] but only for values of  R in the range 12 < R < 27. Raithby said that for 
R > 27 the solution took the form that is familiar in pipe flow where the non-dimensional 
velocity has a maximum at the centreline and then passes through a minimum and another 
maximum before becoming zero at the wall. Such a change in the profile was not observed 
in this numerical survey, the solutions being of the same shape throughout the range. For  
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Figure 3.2. Axial velocity f '07) against non-dimensional channel distance ~ for section II wall suction. 
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Figure 3.3. Axial velocity profiles for section III wall suction indicating the dual solutions in this range. 
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large R the values of the non-dimensional velocity at the minimum and at the maximum 
differ only by a small amount and are both approximately equal to 1.0. Furthermore the 
maximum occurs close to the wall, giving rise to a boundary layer type solution which 
does not differ much from section I large R solutions. In fact the difference in the solutions 
is found analytically by the introduction of exponentially small terms in chapter 5. 

Fig. 3.3 illustrates the velocity profiles for section III solutions. These profiles have the 
same shape as those of section II except for a region of reverse flow around the centre of 
the channel. As R increases the point r/l, at which the maximum of f '(r/) occurs, becomes 
closer to the wall and the point t/2, at which f'(t/) = 0, approaches the value r/1/2. Further, 
f ' (0) ,  which is negative, decreases with increasing R while the value o f f ' (0 )  + f ' ( rh)  tends 
to zero as R -+ co. 

The region between the maximum and the wall is small with the derivatives of f(r/) 
changing rapidly inside it and thus has the form of a viscous layer. From the numerical 
results this third solution for f'(~/) would appear to be a slight perturbation of a cosine 
inviscid solution, valid in the channel interior, matched to a viscous layer solution near 
the walls. 

The results indicate that the solutions for large suction in each of the three sections con- 
sist of an outer inviscid solution, valid in the central region of the channel, and an inner 
solution, which is confined to the viscous layers near the walls. When R is large the velocity 
profiles for sections I and II are very similar, and in fact are exponentially small perturbations 
of the same solution. Thus, for the moment, a single analytic solution will be found to cover 
both of these sections and this will later be modified to deduce the two solutions of sections 
I and II. In this way we need only look for two complete solutions of (2.7c), one to cover the 
section III profiles and the other to act as a single solution for the dual solutions of sections 
I and II. A complete solution consists of an inner and an outer solution. 

Both types of outer solution satisfy the inviscid equation 

f ,2  _ ff,,  = ~z, (3.1) 

and the outer boundary conditions 

f(0) = 0, f"(0) = 0. (3.2) 

Equation (3.1) has three different types of solution, linear, sinusoidal or hyperbolic. The 
particular types we require, corresponding to the two outer solutions, will be discussed in 

chapter 4. 
Inside the viscous layer the complete equation (2.7c) must be solved, subject to the inner 

boundary conditions 

f(1) = 0, f ' (1)  = 1, (3.3) 

for the two separate cases. 
To estimate the thickness of the viscous layer consider the transformation 

f(t/) = #(0,  (3.4) 

where 

= a(1 - g), (3.5) 

and a is a function of R. 
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Substitution into (2.7 0 yields that g(O satisfies 

eaag " - aZ(g 'z - gg") = -~2 .  

The viscous and inertia terms are of equal order if 

~a 3 ~. a 2, 

which gives a = R. 

29 

(3.6) 

(3.7) 

Thus both types have a viscous layer of order 1/R, even though the two inner solutions 
are different. The two inner solutions will have different values for the constant c~, and 
these will be investigated in chapter 4. 

4. Analytic solutions for sections I and II and section HI  profiles 

In this chapter the outer solution for section III profiles and an outer and inner solution, 
with exponentially small terms neglected, for sections I and II are determined. As remarked 
previously, both the outer solutions require (3.1) to be solved subject to (3.2). 

4.1. Solution for  section III  

To determine the outer solution first differentiate (3.1) to obtain 

f ' f "  - f f "  = 0, (4.1) 

which, i f  f "  ~ O, may also be written 

f ,  f,,, 
- (4.2) 

f f "  

Integrating (4.2) gives 

f "  = CZf, (4.3) 

where C z is a constant, positive or negative. The solutions of (4.3), for which f"(tl) ~ O, 

are 

f(t/) = A sin (Ct/ + B), (4.4a) 

f(tt) = A s inh(Ct /+  B), (4.4b) 

where A and B are constants and C is real. The boundary conditions give 

B = 0. (4.5) 

The numerical solutions for f ' (q)  indicate that 

f ' (q)  = D cos rcq, (4.6) 

which corresponds to the analytic solution, (4.4a) with (4.5), when C = rc and CA = D. 

When (4.6) is substituted into (3.1) we obtain 

0 2 : ~2 
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and thus 

D = ~ .  

The outer solution can therefore be written as 

f ' ( t / )  = e cos rcq, 

i.e. 

f (q )  = - -  sin nq. 
7c 

F r o m  (4.8) we note that 

c~ = f ' (O).  

TABLE 4.1 

Values of  ~1 and f'(~) at some important points in the section III large R solutions 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

R ~/2 ~ if(r/1 ) if(0) (1 -- ~h)R f'(O)/R 

118.73 0.4179 0.8328 6.755 - 6.635 19.8 -5.588, - 2  
367.72 0.4588 0.9171 12.691 - 12.659 30.5 -3.443, - 2  
449.92 0.4643 0.9283 14.597 -14.572 32.3 -3.239, - 2  
574.96 0.4702 0.9403 17.420 -17.401 34.3 -3.026, - 2  
680.58 0.4738 0.9474 19.743 - 19.726 35.8 - 2.898, - 2 
787.33 0.4766 0.9530 22.040 -22.026 37.0 -2.798, - 2  
895.10 0.4788 0.9575 24.316 -24.304 38.0 -2.715, - 2  

1003.78 0.4806 0.9611 26.572 -26.562 39.1 -2.646, - 2  

Some features o f  the section I I I  large R solutions are shown in Table 4.1. The value o f  

(1 - t /0R can be seen to be almost a constant,  verifying that  (1 - th), which is a measure 

o f  the thickness o f  the viscous layer, is o f  order 1/R. Furthermore,  the results in the table 

indicate that ~ ( =  f ' (0 ) )  is propor t ional  to R. This can be deduced f rom equation (3.6), 
a s  c~ 2 ---= a 2 = R 2 for the constant  term of  the inner equation to be o f  the same order  as 

the viscous and inertia terms. The difference in the two inner solutions illustrates why 

is o f  different order for the two cases, a point  that  will later be verified by showing that  

= 0(1) for sections I and II. An  investigation o f  the numerical results for  large R indicates 

that  none of  the individual terms of  (2.7c) are completely dominant  th roughout  the viscous 
layer. Thus no simplification o f  the equation, that  would be valid throughout  the layer, 

could be made and the full equation would have to be solved. As this solution, with its 
reverse flow at the channel centre, seems physically unreasonable no effect was made to 

obtain an analytic solution in the viscous layer. 

The first three terms of  an approximate series expansion for  ~ can be determined f rom 
the numerical results for  large R. The series 

f ' ( 0 )  7 .9 1450 
- - R  -- 0 . 0 2 - - - R  + R ~ -  (4.11) 

gives results accurate to at least three decimal places when R > 600. 
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4.2. Solution for sections I and H neglecting exponentially small terms 

4.2.1. Outer solution 
One would assume that exerting large suction on the flow in a channel would produce 
boundary layers at the walls. Since the flow for these two sections should be fairly well 
behaved it appears physically reasonable to expect an outer solution of the form f(r/) ~ q, 
and this is indeed substantiated by the numerical results. 

As stated previously, the inviscid equation (3.1) has a linear solution 

f(q) = Aq + B, (4.12) 

corresponding to the case f"(t/) - 0, and clearly this is the appropriate choice of outer 
solution. This solution satisfies the boundary conditions and the equation of motion if 
A = e and B = 0, and then becomes 

f(r/) = ~q. (4.13) 

The normal wall condition, f ( 1 ) =  1, suggests ~ = 0(1), and this is confirmed by the 
numerical results. We write ~ as 

co 

cr = Z ~r g ,  (4 .14)  
r = O  

where the coefficients ~ are constants determined by matching (4.13) with the inner solution. 

4.2.2. Inner solution 

As the viscous layer is of order R -  1 we use the stretching transformation 

(1 - I/) = et. (4 .15)  

With this stretch the inner boundary conditions (3.3) become 

f(0) = 1, f ' (0)  = 0, (4.16) 

and (2.7c) takes the form 

f , ,  + if, ,  _ f , 2  = __0~2e2 (4.17) 

where primes denote differentiation with respect to t. 
We note that as ~ = 0(1) the right hand side of (4.17) is of 0(e2), whereas for the section 

III case it would be of order 1, and thus the constant term will not be as significant in the 
viscous layer for this case. 

Since the inner solution must satisfy the condition f(0) = 1, a perturbation solution of 
the form 

to  

f(t)  = 1 + Z f , ( t )g  (4.18) 
1 ' = 1  

is sought. The boundary conditions to be satisfied by f,(t) are, therefore, from (4.16) 

f~(0) = 0, f~'(0) = 0. (4.19) 
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Substituting (4.14) and (4.18) into (4.17) and equating coefficients of e" yields 

" + r = 0, (4.20) fl J 1  

f2" + f'~ + f~f '~  - ( f~)z  = _~o 2, (4.21) 

The solution of (4.20) subject to (4.19) is 

f l ( t )  = Aa( t  - 1 + e-t), (4.22) 

where As is an arbitrary constant. Similarly, as the equation for each fr( t )  is of third order 
and there are only two boundary conditions each will contain an arbitrary constant A ,  say. 
For simplicity, the constants A, and the coefficients e, of e will be obtained at each iteration 
by matching the inner and outer solutions. 

The first two terms of the inner expansion are 

f ( t )  = 1 + A l e ( t  - 1 + e-t). (4.23) 

The outer solution (4.13) expressed in terms of the inner variable t is 

f(t) = % + (~1 - %t)e + ( 0 ( 2  - -  ~l t )  g2 d- . . . .  (4.24) 

Matching the inner solution (4.23), as t --> o% with (4.24) gives 

% = 1, (4.25) 
A l ( t -  1 ) = ~ 1 -  t, 

and thus 

~1 = -A1  = 1. (4.26) 

Solving the equations for f2, f3 and f4 in a similar manner gives 

f x ( t ) =  1 - t - e - t ,  

f2(t) = 4 - t -  ( - ~ - +  3t + 4 ) e  -t, 

(~._~4 ) e-2, 
f3(t ) = 12_~_9 _ 4t -- + ~t 3 + 9t z + 28t + 65_ e - '  + - - ~ ,  (4.27) 

f 4 ( t  ) _ 2~37_, _ i~9  t _ + ~t s + 4t 4 + ~ . t  3 + 4~ , t 2  

) e-" 
+ l~_z t  + ~-r + + 9 t + 5~ e - 2 t _  --72 

The coefficients ~ are given by 

~o = 1, ~1 = 1, ~e 2 = 4, ~a = 129, "4 -- 2 6V3 J 7 (4.28) 
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5. Solution for sections I and II including exponentially small terms 

The solution of the previous chapter agrees fairly accurately with both the section I and II 
numerical solutions for large R. An effort to correctly predict these two solutions will now 
be made by investigating the terms neglected in the matching process. The terms of the 
form t' e -"t in the inner expansion (4.27) have not been matched with any corresponding 
exponentially small terms in the outer expansion. In this chapter the outer expansion will 
be modified to take into account these exponentially small terms. 

5.1. Modified outer solution 

To obtain the modified outer solution the complete equation, i.e. (2.7c), is solved in the 
outer region subject to the outer conditions (3.2). 

If  the modified outer solution is assumed to be 

f(q) = st/ + 7Fl(q) + 72Fz(q) + . . . .  (5.1) 

where ~ is exponentially small, then substitution in (2.7c) yields that FI(t/) satisfies 

eF'~ - c~qF~ + 2~F~ = 0. (5.2) 

The outer conditions (3.2), in terms of FRO/), become 

F, (o)  = o, F ' ; (o)  = o. (5.3) 

Differentiate (5.2) to obtain 

eF] v - ~t/F'; + c~F~.= 0, (5.4) 

from which we deduce 

Gv(0) = 0. (5.5) 

An extra differentiation of (5.4) gives 

~F i - ~qFil v = 0, (5.6) 

whose solution is 

F~V(r/) = C exp (~q2/2~), (5.7) 

where C is a constant. Equation (5.5) implies C = 0 and thus 

F~(q) = a t l  3 -}- bq z + dr 1 + e, (5.8) 

where a, b, d and e are constants. The boundary conditions give b = e = 0, and substi- 
tution of (5.8) into (5.2) yields that ~d = -3ca .  Thus a solution for F~(q) is 

Vl(~/) = q3 + dq, (5.9) 

where d = - 3~/ct. (5.10) 
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The equation for  F 2 ( 7 )  is 

eF' 2 - ~qF 2 + 2~F 2 = F,F'~ - F~ 2 

= --374 - d E. (5.11) 

Differentiating (5.11) twice with respect to 7 gives 

5F~ - ,qF~ v = - 3672. (5.12) 

The solution of  (5.12) subject to the condit ion Fi2v(0) = 0, obtained by the differentiation 
of  (5.11) and substitution f rom (5.3), is 

;o F~(tl ) = _ __36 exp (c~72/25) s 2 exp ( -  es2/2e) ds 
8 

36 36 . ('~ 
= - -  7 - ~ -  exp (~7~/25) | exp ( -  ~s2/25) ds 

(Z J0 

36 36 (roe "~ 
= - - e  7 - - - e  \ ~ - ]  exp(c~q2/25) e r f ( 7 / ~ / 2 ~ )  

36 3 6 r ( z r s ~  
= - -  7 - - -  exp (~72/25) 

L\2 / 
{ ~t 1"3" ... "(2m - 1) -2M+1)}3 (5.13) 

5 i +  Z ( - - l )  m '-~ 0(17R~[ , 
~ 7  m = I ( ~ 7 2 / 5 )  m 

where the asymptotic approximat ion of  the error  function has been used. 
When expressed in terms of  t the function FI(7) is a simple polynomial  and, therefore, 

is not  the term to be matched with the exponential  terms in (4.27). Equat ion (5.13) contains 
exponentials and thus to see if it will match with the terms of  the form t r e - t  in (4.27) 
its behaviour  for  large R when 7 ~ 1 will be examined. F rom (5.13), as R ~ oo and 7 ~ 1 

- -  exp(o;72/25), 

which in terms of  t 

(' zc5 "/~ 
= - 36 \ - ~ a  j exp {(1 - 25t + ezt2)~/25} 

= - 3 6  e x p ~ - ) e x p { ( 1  - ~)t} exp e x p ( - t ) .  (5.14) 

Equat ion (5.14) contains e -t, so clearly F2 will match with those terms of  the form t r e - t  

in (4.27). The matching will be carried out using the four th  derivative of  those terms in 
equation (4.27) which involve e -t, that  is 

{ ( :  ) d 4 f  - 5  - 4  d 4 f  - 5 -3  e - t  1 + e - t -  2 + 5 2  2t - 9 
dtl 4 dt 4 8 2 

+ 53  + + - . 
48 8 4 3 4 4 24 + . . . .  (5.15) 
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In (5.14) the first two exponentials are developed in a series expansion in t. This expansion 
is the same as the expansion in (5.15) apart from a constant factor, which is a function of 
only. It is the appearance of this constant factor that allows us to determine the exponentially 
small parameter 7 2 in terms of e. If 7 2 was known and the expression 7 2 x equation (5.14) 
evaluated as a power series in t, then all the powers of t in this expansion would match 
identically with the corresponding powers of t in equation (5.15). Matching (5.14) and 
(5.15) yields 

3 6 t ~ j 3  ) 72 exp(-~e-e) = {1 + e (  ~ 

t t 5 t 4 5t 3 
..~ /~3 .~_~ 8 + 4  3 + 

X exp {(e -- 1)t} exp (-- ~t2e/2). 

- - - t - 2  "]- /3  2 2 t - ~ z  
2 

7t 2 79t 301 ) } 
' ~ , . .  

4 4 24 

(5.16) 

When the right hand side of equation (5.16) is evaluated the terms in t and higher powers 
cancel each other out leaving 

3 6 / ~ - a  ! 7 exp = 1 - 2e - ~e 2 - 3 o~_~3 + O(e4), (5.17) 

i.e. 

72 . . . . . . .  ~ - t ~ - ~  7 ) 2 -  4 144 + 0(e4) " (5.18) 

Clearly, for large R, equation (5.18) will give two roots for 7, and these will correspond to 
the dual solutions. 

Equation (5.18) will yield two roots for 7 if the series on the right hand side is positive. 
To find the critical value of e, and hence R, at which two roots first exist the zero of the 
above series must be calculated. In its present form equation (5.18) may not provide a good 
approximation to this critical value of e. This is because the coefficients of e" in the series 
all have the same sign and are increasing in size with increasing r. These facts infer that the 
term of 0(e 4) could be significant. The right hand side of (5.18) can be modified by multi- 
plying the series by powers of e -  2 to produce an alternative series with better convergence. 
This procedure can change the coefficients of e" quite drastically, but it was found that 
probably the most accurate series is obtained when 72 is written as 

72 ~8(--~2 "~ ~ 1 - - - -  + - -  +0 (e  4) . (5.19) 
= 3 6 \ h e  7 )  exp 2 2 4 144 

If the terms of 0(84 ) are now considered negligible in (5.19) then there are two roots for 7, 
corresponding to the dual solutions, provided e < 0.0947, i.e., provided R > 10.6. The 
figure 10.6 as the value of R at which dual solutions begin was derived by the use of a 
method that has its greatest accuracy when R is large, which may account for the difference 
between it and the numerical result of 12.165. 

Expanding (5.19) for R > 10.6 gives 
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7 = + 6 \ roe 7 ,] exp - -  {1 - �88 - - - -  + 0(5~)}. (5.20) 

A comparison of  the accuracy of 7 as given by (5.20) with the numerical results will be 

made in chapter 6. 

5.2. Modified inner solution 

The term 7Fx(t/) introduced into the modified outer expansion was not matched with any 
terms in the inner expansion. Consequently the inner solution must be modified to include 

terms which match with ?Fl(q), and will therefore be written in the form 

oO o0 

f ( t )  = 1 + Y'. f,(t)5 r + 71 • h,(t) 5r + 0(7~). (5.21) 
r = l  r=O 

Also, as there are dual solutions the constant ~ will take two values, depending on the 
sign of 7, and will therefore be written 

oo oo 

= E ~r 5r + 7 Z firs' + 0(72). (5.22) 
r = O  r = O  

In (5.21) and (5.22) fir and h~(t) must satisfy equation (4.17) and the boundary conditions 
(4.16), while 7t is an exponentially small term related to 7. The wall conditions (4.16) for 

h,(t) are 

hr(O ) = h'(0) = 0. (5.23) 

The first two terms of the modified outer solution (5.l), when (5.9), (5.10) and (5.22) are 

used, become 

f(q) = E c~,5't/ + ? E fl,5"t/ + 7 t/3 �9 + . . . .  (5.24) 
r=O r=O O{ 

The terms of order 7 in the above are 

As e-1  can be expanded as a power series in 5 the coefficient of  t / in  (5.25) can be reduced 

to the single term 

35 
Z f l Y - -  = co = Z o)r5 r, (5.26) 

r=O ~ r=O 

which results in a much simpler and clearer matching of the modified outer and inner 
solutions. In terms of the inner variable t and the constant co, equation (5.25) becomes 

y{1 + coo + (cot - mot - 305 + (o)2 - c o t t  + 3t2)5 2 

-k- (O)3 -- CO2 t -- t3) 53 "+" ((94 - -  (-oat) 54 "1- - . - } .  (5.27) 
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The term 71 Z,~0 h,(t)e" will now be matched with the terms of  0(~) in (5.24), i.e. with 
equation (5.27), and will thus allow the coefficients co, and the exponentially small term Vl 
to be determined. The coetficients/?, of e can be recovered from the co,'s by the use of  
(5.26) and (4.28). 

As e appears in the inner equation (4.17) the coetficients/~, will be introduced into the 
differential equations for the h,(t). This will require the recovery of/~, from co, at each step 
in the evaluation of the h,(0's. This is a cumbersome method which need not be employed 
if the differentiated form of the inner equation, that is 

f i r  + ff , , ,  _ f , f , ,  = O, (5.28) 

is used. 
Substitution of  (5.21) into (5.28), and equating coefficients of ~ ,  gives that the equation 

for ho(0 is 

h~ v + h ;  = 0. (5.29) 

The solution of (5.29) that satisfies the boundary conditions (5.23) is 

ho(t ) = Ao(t - 1 + e- t )  + Bo tz, (5.30) 

where Ao and Bo are constants. If we let t ~ oo in (5.30) and match with (5.27) we get 

AoYi(t - 1) + Bo~lt 2 ~, ~{1 + coo + (col - coo t - 3t)~ + ...}. (5.31) 

The terms of 0(~) match only if 

i.e. 

1 + co o = 0, 

(.O 0 ~ - - 1 ,  

The term of 0(~) on the right hand side of (5.31) indicates that 

71 - 7 5  

and therefore 

A o =  - O 9 o - 3 =  - 2 ,  col = - A o  = 2 ,  B o = 0 ,  

which give 

ho(t) = - 2 ( t  - 1 + e-t). 

The coefficient of e7t gives that hi(t) satisfies 

I l l  t t !  V! t t i t  tVt 

h~ v + h i  "=- h o f l  + h o f i  - h o f l  - h o f l  

= 4 t e  -t .  

The solution of (5.36) subject to the conditions at t = 0 is 

hi(t) = B i t  z + (A 1 -- 2B1)t + (12 - A 1 + 2B1) 

- -  (2t 2 + 12t + 12 - Ai + 2B1)e -t. 

(5.32) 

(5.33) 

(5.34) 

(5,35) 

(5.36) 

(5.37) 
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The coefficient of  7e z in the matching of (5.37), for large t, with (5.27) yields 

B 1 = 3 ,  A s = 4 ,  co 2 =  14, (5.38) 

and therefore 

hs( t  ) = 3t z - 2t + 14 - (2t 2 + 12t + 14)e- ' .  (5.39) 

The equation for h2(t) is 

t t t  ! t t  t t  t t t !  i t !  ! t t  t !  t t t t  t i t  

h~ v + h2 = h o f z  + hof~  - hof~ - h o f 2  + hsYs  + h s f l  - hsYs - h l f a  

= (3t 3 - 3t 2 - 10t - 6)e - t  + 12e -2t - 6. (5.40) 

We solve for h2(t) in a similar manner to get 

_ 3 _ - z t  (5.41) h2(t ) = 247 14t - t 3 - (4a-f + 8t 3 + 40t 2 + 108t + 125)e - t  + ze  , 

and co 3 = z } 7. 

Calculating the coefficients fi, of  a, using equation (5.26), yields 

f l 0 = - 1 ,  /71 = 5 ,  / ?z=  11, /73= 2~9. (5.42) 

6. Comparison of the numerical and the modified analytic solutions 

A check on the accuracy of the modified solution will now be made by comparing two of 

its main features with numerical results. 
For  the ordinary outer solution (4.13), f " ( t l )  at tt = 0 is identically zero, although this 

is not the case in the numerical analysis. By use of  the modified outer solution (5.1) we see 

that 

[f"(t/)]~=o = 67 + 0(~ 12) 

/ / 2  "~+ (f (1 4 e - s ) }  ~ s ~ z  8121621~3 0(~4)}, "~ + ~ j 7 )  exp~ { 1 - � 8 8  . . . . . .  + 

which, in terms of R,  

= + exp 1 
,, ,o / 4 4 R  32R z 1152R 3 + 0 . (6.1) 

In Table 6.1 numerical results for f " ( q )  at q = 0 are compared with the analytic values 

obtained by the use of  the first one, two, three and four terms of equation (6.1). These 
values, when first observed, appear to be more accurate for the section I solutions, as the 
section I results converge to the numerical results when the number of  terms is increased 
whereas the section I I  values are closer to the numerical results when only two or three 
terms are used. However, the section I I  results are more accurate, although the error, as 
the number of  terms included is increased, tends to the same value for both section I and II  
results and corresponds to the term of 0(~, 2) omitted. 

In previous papers on flow in porous channels and pipes the main check on the accuracy 
of the analytic solutions has come through the evaluation o f F ( t / )  at r/ = 1, which is 
proportional to the axial skin friction at the wall. Prior to the inclusion of exponentially 
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TABLE 6.1 

Numerical values of  f ' (~ )  at ~ = O, for various R in different sections, compared with the analytical 
formula (6.1) 

39 

Section Analytical - Number of terms of (6.1) used 

First First two First three First four 

Numerical 

28.142 I -2.105, - 1 
37.519 I -3.340, - 2  
49.098 I -2.958, - 3  
55.934 I -6.728, - 4  
65.674 I -7.805, - 5  
28.139 II 2.106, - 1 
37.791 II 3.160, - 2  
44.717 II 7.510, - 3  
56.008 II 6.620, --4 
64.296 II 10.613, --5 

--2.012, - 1  
-- 3.229, - 2 
--2.883 - 3  
-6.578 --4 
-7.656 --5 

2.013 --1 
3.056 - 2  
7.301 - 3  
6.472 - 4  

10.406 - 5 

- 1 . 9 9 1  

--3.210 
--2.873 
-6.561 
-- 7.642 

1.992 
3.038 
7.271 
6.455 

10.386 

- 1 - -  1 . 9 8 4  

- 2 - 3.205 
- 3  -2.87t  
--4 --6.558 
- 5  --7.640 
- -  1 1.985 
- 2  3.034 
- 3 7.265 
- 4  6.453 
- 5  10.383 

-- 1 -- 1.790 
- 2  --3.128 
--3 -2.862 
- 4  -6.552 
- 5  --7.639 
- -  1 2.240 
- 2  3.104 
- 3  7.310 
- 4 6.457 
- 5  10.384 

--1 
--2 
--3 
--4 
- 5  
- I  
--2 
--3 
--4 
- 5  

small  terms in the  series, the  analyt ic  fo rmula  used for  the compar i son  o f f " ( t / )  a t  t/ = 1 

wi th  the  numer ica l  results was tha t  ob ta ined  f rom the inner  solut ion (4.18) wi th  (4.27), i.e. 

[f"(q)], l=l = g-2[f"(t)]t=o = - { 1 
8 

which, in terms o f  R, 

- -  - 1 - ~ e  - - ~ 2 7 e  z + 0 ( ~ 3 ) ) ,  

= - R -  1 2R 12R 2 + 0  . (6.2) 

The two results requi red  for  f " (q)  at  r/ = 1 are  ob ta ined  f rom the modif ied  inner  solut ion 

(5.21), which is a combina t ion  of  (6.2) and  a cor rec t ion  due to the exponent ia l ly  small  

terms.  This  cor rec t ion  is 

~- {h;(O) + ~h~'(O) + ~2h~(O) + ...) + O(r2), 

which 

1 ( 2 ) §  e x p {  ( I + R ) t {  5 253 8 2 6 2 1 }  
= + ~ 1 4R 32R z 1152R ~ + "'" 

• - 2 + ~ + - ~ - + . . .  +0(72) .  (6.3) 

Table  6.2 compares  the numer ica l  results for  f"(r/)  a t  q = 1 with the analyt ic  results,  

which include the exponent ia l ly  small  correct ion.  F o r  any R greater  than  abou t  45 the 

results in ei ther  sect ion have the same error ,  which is due to the terms o f  0(R -3)  omi t t ed  

f rom (6.2). In  the middle  range 30 < R < 45 the inaccuracy  in the results is a combina t ion  
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TABLE 6.2 

Numerical results of f"(~) at ~ = 1 for various values of R compared with the analytic results obtained from 
equation (6.2) together with the exponentially small correction (6.3) 

R Section f" (1)  from (6.2) Correction (6.3) Correctedf"(1) Numerical 

28.142 I -- 26.840 1.444 - 25.396 -- 25.502 
37.519 I - 36.306 0.334 -- 35.972 - 35.959 
49.098 I - 47.942 0.041 -- 47.901 - 47.893 
55.934 I - 54.800 0.011 - 54.789 -- 54.784 
65.674 I - 64.562 0.001 - 64.561 - 64.558 
28.139 II -- 26.837 -- 1.445 - 28.282 - 28.399 
37.791 II - 36.579 -0 .319  - 36.898 -- 36.884 
44.717 II - 43.543 - 0.093 - 43.636 - 43.625 
56.008 II - 54.874 - 0.011 - 54.885 -- 54.880 
64.296 II - 63.182 - 0.002 - 63.184 - 63.180 

o f  t h e  a b o v e  e r r o r  t o g e t h e r  w i t h  t h e  e r r o r  i n  t h e  c o r r e c t i o n  (6.3) ,  w h i c h  is d u e  t o  t h e  e x -  

c l u s i o n  o f  h i g h e r  o r d e r  t e r m s  in  t h e  f i r s t  s e r i e s  a n d  a l s o  t h e  o m i s s i o n  o f  t h e  t e r m s  o f  0(yz) .  

W h e n  R < 30 t h e  e r r o r  is  a l m o s t  c o m p l e t e l y  d u e  t o  t h e  t e r m s  o f  0(y2).  
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